bá ###°#Y# +##bEvºú"f®f ŏ#bf fftk(f0 p +f@n##fnù {**É**®**(É**j ÉE ò Gờ ÉÆ ò/BÃÖ μÖð/×¾Ö-ÖÖÖ † 3μÖÃÖðÍr Ö74/2014 केल्यानुसार **थें प्र. र्ĀĀÜR / र Ö. रĀĀÜR ⁻ऍEÖÖ ॐ ×<ौÖÇHÖ ॐÖÖÇHÖ ĀĞÄÖÇ, WÖ † ¾ÖÖÄÖEौÍ ÖÄÖ † ÖÖÖ ŸÜR रĀĀÜR** - (EÖ Ö ¾0000µ00 † ¾000 (Öndi (ÖÖ अर्क्स) सार्वि Ö (2Ö अर्क) वर्षा साथि वर्षा साथि वर्षा विद्यापरिषदेच्या वतीने (Ö. वर्क Öगुरु यांनी, त्यांना פ#ÜbÜB †ÜÆtü त्या अनुषंगाने सुधारीत तयार वकिं×ÜbμÜÖ †³μÜÄÖnİİ ÜÖ'ÜB ¯ÜVÖ μÖÖ ¯Üç üĞ ÜndÄÖÜBÜÖ †ÖÖ»μÖÖ - ČEEG) O 中成 CEECTE (A COŠ G - COŠ G POP p COVO p COVO † CEE G | √ [1] | B.Sc. Physics | Semester-III & IV, | | | |--------------|-------------------------------------|--------------------|--|--| | [2] | B.Sc. Chemistry | Semester-III & IV, | | | | [3] | B.Sc. Botany | Semester-III & IV, | | | | [4] | B.Sc. Zoology with minor changes | Semester-I & II, | | | | [5] | B.Sc. Zoology | Semester-III & IV, | | | | [6] | B.Sc. Fisheries | Semester-III & IV, | | | | [7] | B.Sc. Electronics (Opt.) | Semester-III & IV, | | | | [8] | B.A./B.Sc. Mathematics | Semester-III & IV, | | | | [9] | B.Sc. Computer Science | Semester-I & II, | | | | [10] | B.Sc. Information Technology | Semester-I & II, | | | | [11] | B.C.A. | Semester-I & II, | | | | [12] | B.Sc. Computer Science(Opt.) | Semester-I & II, | | | | [13] | B.Sc. Information Technology(Opt.) | Semester-I & II, | | | | [14] | B.Sc. Computer Application(Opt.) | Semester-I & II, | | | | [15] | B.Sc. Computer Maintenance(Opt.) | Semester-I & II, | | | | [16] | B.Sc. Biotechnology (Progressively) | Semester-I to VI, | | | | [17] | B.Sc. Biotechnology (Opt.) (Progressively) | Semester-I to IV, | | | |------|--|--------------------|--|--| | [18] | B.Sc. Sericulture Technology | Semester-I & II, | | | | [19] | B.Sc. Networking Multimedia | Semester-III & IV, | | | | [20] | B.Sc. Bioinformatics | Semester-I & II, | | | | [21] | B.Sc. Hardware & Networking | Semester-I & II, | | | | [22] | B.Sc. Animation | Semester-I & II, | | | | [23] | B.Sc. Dairy Science & Technology | Semester-III & IV, | | | | [24] | B.Sc. Biochemistry | Semester-III & IV, | | | | [25] | B.Sc. Analytical Chemistry | Semester-III & IV, | | | | [26] | B.Sc. Textile & Int. Decoration Semester-I & II | | | | | | with minor changes | | | | | [27] | B.Sc. Textile & Int. Decoration | Semester-III & IV, | | | | [28] | B.Sc. Home Science with minor changes | Semester-I & II, | | | | [29] | B.Sc. Home Science | Semester-III & IV, | | | | [30] | B.Sc. Agro.Chem. & Fertilizers Semester-III & IV | | | | S-29 Nov., 2013 AC after Circulars from Cirular No.55 & onwards - 42 - | [31] | B.Sc. Geology | Semester-III & IV, | | | |------|--|--------------------|--|--| | [32] | B.A. Statistics with minor changes | Semester-I & II, | | | | [33] | B.A. Statistics | Semester-III & IV, | | | | [34] | B.Sc. Statistics with minor changes | Semester-I & II, | | | | [35] | B.Sc. Statistics | Semester-III & IV, | | | | [36] | B.Sc. Industrial Chemistry | Semester-III & IV, | | | | [37] | B.Sc. Horticultural | Semester-I & II, | | | | [38] | B.Sc. Dry land Agriculture | Semester-I & II, | | | | [39] | B.Sc. Microbiology Semester-III | | | | | [40] | M.Sc. Computer Science Semester-I to | | | | | [41] | M.Sc. Information Technology Semester-I to IV. | | | | हा स्धारीत व नवीन तयार केलेल्या अभ्यासक्रमाचा आराखडा शैक्षणिक वर्ष २०१४-१५ करिता मर्यादित असेल व विद्यापरिषदेच्या अंतिम मान्यतेनंतर हे परिपत्रक नियमित ठेवण्याबाबत या कार्यालयाद्वारे नवीन परिपन्नक पारीत करण्यात येईल. तसेच सुधारीत व नवीन तयार केलेल्या अभ्यासक्रमाची प्रत विद्यापीठाच्या संकेतस्थळावर उपलब्ध आहे. ## करिता, या परिपत्रकाची सर्व संबंधितांनी नोंद घ्यावी. विद्यापीठ प्रांगण. औरंगाबाद-४३१ ००४. संदर्भ क्र.एस.यु./सा.शा./सबवि /२०१३-१४/ 8499-902 दिनांक :- २७-०५-२०१४. ## या परिपत्रकाची एक प्रत :- - भा. परिक्षा नियंत्रक, परिक्षा विभाग, - २) मा. प्राचार्य, सर्व संलग्नीत महाविद्यालये, - ३) संचालक, यूनिक यांना विनंती करण्यात येते की, सदरील अभ्यासक्रम विद्यापीठाच्या संकेतस्थंळावर उपलब्ध करुण देण्यात यावेत. - ४) संचालक, ई-सुविधा केंद्र, विद्यापीठ परिसर, - जनसंपर्क अधिकारी, मुख्य प्रशासकीय इमारत, 4) - कक्ष अधिकारी, पात्रता विभाग, मुख्य प्रशासकीय इमारत, (3 - ७) कक्ष अधिकारी, बी.ए. / बी.एस्सी./ बी.सी.एस./एम.एस्सी. विभाग, परीक्षा भवन, .=**=- - ८) अभिलेख विभाग, मुख्य प्रशासकीय इमारती मागे, - डॉ. बाबासाहेब आंबेडकर मराठवाडा विद्यापीठ, औरंगाबाद. ## Dr. Babasaheb Ambedkar Marathawada University Aurangabad # Revised Syllabus of Physics Optional B.Sc. II Year **Semester III & IV** **Effective for Academic Year 2014-15** ## Dr. Babasaheb Ambedkar Marathwada University, Aurangabad. B.Sc. IInd year Physics Syllabus (Semester-III and IV) ## **Revised Syllabus from June 2014** | Semester | Course
Code | Paper | Title of Paper | Periods | Marks | |----------|----------------|-------|--|---------|-------| | III | Physics 201 | VII | Mathematical, Statistical Physics and Relativity | 45 | 50 | | III | Physics 202 | VIII | Modern and
Nuclear Physics | 45 | 50 | | III | Physics 203 | IX | Practical | 45 | 50 | | III | Physics 204 | X | Practical | 45 | 50 | | IV | Physics 205 | XI | General
Electronics | 45 | 50 | | IV | Physics 206 | XII | Solid State
Physics | 45 | 50 | | IV | Physics 207 | XIII | Practical | 45 | 50 | | IV | Physics 208 | XIV | Practical | 45 | 50 | **Scheme of Practical Examination and marks** Practical Examination will be conducted annually Practical Paper IX + X based on theory Paper VII & VIII (50 + 50 = 100 Marks) Practical Paper XIII + XIV based on theory paper XI & XII (50 + 50 = 100 Marks) Experiment- 75 marks + Viva-Voce 15 marks + Record Book/ Journals 10 marks = 100 marks ## **B.Sc.** IInd year Physics (Semester-III) (Mathematical, Statistical Physics and Relativity) Course code PHY-201 Paper-VII Period-45 Marks-50 ## 1. Differentiation and ordinary differential equation: Limit of function, partial differentiation, successive differentiation, total differentiation, exact differentiation, chain rule. Ordinary differential equation, order and degree of differential equation, solution of first order differential equation, and solution of second order linear differential equation with constant coefficient a) Homogeneous equations, b) Inhomogeneous equation, Special case of exponential right hand to find P.I. ## 2. Statistical basis and classical statistics: Introduction, probability, principle of equal a priori probability, probability and frequency, some basis rules of probability theory, permutation and combination, macrostates and microstates, phase space, thermodynamic probability, division of compartments into cells, Maxwell-Boltzmann energy distribution law, evaluation of gi, a and β, M.B. distribution function for ideal gas, M.B. Speed distribution law. ## 3. Quantum statics: Need of quantum statistics, Bose-Einstein distribution law, Planck's radiation law, Fermi-Dirac distribution law, electron gas, Fermi level and Fermi energy, E_{FO} for electrons in a metal, comparison of three static, difference between classical and quantum statistics. ## 4. Theory of relativity: Introduction, frame of reference, Galilean transformation equations, Michelson Morley experiment, special theory of relativity, Lorentz transformation equation, length contraction, time dilation, addition of velocities, variation of mass-energy equivalence. - 1. Mathematical Physics- Gupta, Kumar - 2. Mathematical Physics- B.S. Rajput (PragatiPrakashan) - 3. Heat, thermodynamics & statistical Physics- Brijlal, N. Subrahmanyam, P.S. Hemne. S. Chand Publication - 4. Text book of heat and thermodynamics- J.B. Rajam& C. L. Arora. - 5. Modern physics R. Murgeshan, KiruthigaShivprasath, S. Chand Publication. ## **B.Sc.** IInd vear Physics (Semester-III) (Modern and Nuclear Physics) Course code PHY-202 Paper-VIII Period-45 Marks-50 #### 1. Photoelectric Effect: Introduction, Lenard's method to determine e/m for photoelectrons, Richardson and Compton experiment, Relation between photoelectric current and retarding potential, Relation between velocity of photoelectrons and frequency of light, photoelectric cells-(1) Photo- emissive cell (2) Photo- voltaic cell (3) Photoconductive cell, Applications of photoelectric cells. ## 2. X-rays: Introduction, The absorption of X-ray's, Laue's experiment, Bragg's Law, The Bragg's X-ray spectrometer, powder crystal method, The Laue method, X-ray spectra, Main features of continuous X-ray spectrum, Characteristics x-ray spectrum. #### 3. Nuclear forces and models: Introduction, Binding energy, Nuclear stability, Nuclear forces, Meson theory of nuclear forces, liquid drop model, shell model, Energy released in Fission, Chain reaction, Atom bomb, Nuclear Reactors, Nuclear fusion, Source of stellar energy. #### 4. Particle Accelerators and Detectors: Linear accelerator, Cyclotron, Synchrocyclotron, Betatron, Ionisation chamber, proportional counter, Geiger – Muller counter. - 1. Modern Physics-J. B. Rajan - 2. Modern Physics- R. Murugeshan, Er. Kirutyhiga, Sivaprasath. S. Chand Publication - 3. Nuclear Physics- Kaplan - 4. Nuclear Physics- B.N. Srivastava - 5. Atomic and nuclear physics-N. Subramanyan and Brijlal. ## **B.Sc.** IInd year (Semester-III) **Physics Practical Course code PHY-203** Paper-IX Marks-50 - 1. 'h' by Photo cell - 2. e/m by Thomson's tube method. - 3. Determination of absolute value of B_H and B_V using Earth Inductor - 4. Stefan's constant by using thermo couple - 5. Measurement of low resistance using potentiometer. - 6. Frequency of A.C. mains using sonometer. - 7. Specific rotation by Laurent's half shade polarimeter. - 8. Cauchy's constant by spectrometer **Note:** At least six experiments should be performed. ## **B.Sc.** IInd year (Semester-III) **Physics Practical Course code PHY-204** Paper-X Marks-50 - 1 Thermal conductivity of rubber tube. - 2. Study of temperature dependence of total radiation. - 3. To draw the histogram of theoretical Gaussian curve. - 4. Comparison of capacities by Desauty's method. - 5 Velocity of sound using Helmholtz resonator. - 6 Surface tension by Ferguson's method. - 7 R. P. of Telescope/microscope. - 8. Determination of Wavelength of light by Newton's ring **Note:** At least six experiments should be performed. ## **B.Sc.** IInd vear Physics (Semester-IV) (General Electronics) Course code PHY-205 Paper-XI Period-45 Marks-50 #### 1. Semiconductor: Introduction, Construction, Working and Characteristics of semiconductor diode, Zener diode, Zener diode characteristics, Transistor (PNP and NPN), Transistors characteristics (CE, CB and CC), Construction, Working and Characteristics of FET & MOSFET. ## 2. Transistor Biasing and Amplifiers: Transistor biasing, Selection of operating point, bias stability, transistor biasing circuits fixed bias or base bias, collector feedback bias, emitter feedback bias or self-bias. Single stage transistor amplifier, frequency response of RC coupled amplifier, Noise in amplifiers, feedback in amplifiers, Op-Amp characteristics, inverting & non-inverting amplifier, Op-Amp as an adder and subtractor. ## 3. Oscillators and Multivibrators: Two port network representation of a transistor, Hybrid parameters or h – parameters, Positive feedback, Basic principle of Oscillators, requirements of feedback, RC Oscillator (Phase shift Oscillator), LC Oscillator (Hartley Oscillator) Transistorised. Astable multivibrator, monostable multivibrator, bistable Multivibrator, #### 4. Modulation and demodulation: Modulation, Amplitude modulation, Modulation index, frequency modulation, phase modulation, demodulation, advantages of frequency modulation over amplitude modulation. - 1. Basic principle of electronics- V. K. Mehta. - 2. Basic Electronics & Linear circuits- N.N. Bhargawa. - **3.** An introduction to Electronics edition-II or III A.P. Malvino. - **4.** Radio engineering- M.L. Gupta. - **5.** An introduction of Electronics K. J. M. Rao. ## **B.Sc.** IInd vear Physics (Semester-IV) (Solid State Physics) Course code PHY-206 Paper-XII Period-45 Marks-50 ## 1. Crystal Structure: Introduction, Crystal lattice- plane lattice, space lattice, translation vectors, Unit cell, (primitive, non primitive Wigner-Sietz primitive cell) Basis, symmetry operations, point groups and space groups, type of lattices (two dimensional and three dimensional lattices), lattice directions and planes, Miller indices, Inter planer spacing, simple crystal structure. ## 2. Bonding and Band theory of solids: Introduction, concept of inters-atomic forces, cohesive energy and types of bonding, primary bonds- (ionic bonds, covalent bond and metallic bond), secondary bonds-(Vander Walls bonds and hydrogen bonds). The Kroning-Penney model, Energy versus Wave vector relationship, different representations (Brillouin zone) ## 3. Thermal properties of solids: Classical theory of lattice heat capacity (Concept and comparison with experimental values), Einstein's theory of lattice heat capacity, Debye's model of lattice heat capacity, density of modes, limitations of Debye's model. ## 4. Free electron theory of metals and Transport properties: Drude-Lorentz's classical theory, electrical conductivity, thermal conductivity, Wiedemann Franz law, significance of Fermi energy level, Hall effect, Hall voltage and Hall coefficient, experimental determination of Hall coefficient, Importance of Hall effect. - 1. Physics for degree student C. L. Arora & Dr. P. S. Hemne S. Chand publication - 2. Solid State Physics and Electronics R. K. Puri & V.K. Babbar- S. Chand publication - 3. Fundamentals of Solid State Physics- Saxena, Gupta, Saxena Pragati prakashan, Meerat - 4. Solid State Physics, Revised VIth Editions, S.O. Pallai. - 5. Introduction to Solid State Physics, VIIth Edition, C. Kittel. ## **B.Sc.** IInd year (Semester-IV) **Physics Practical** Course code PHY-207 Paper-XIII Marks-50 - 1. Energy band gap of semiconductor using thermister. - 2. I.V. Characteristics of solar cell. - 3. Calibration of bridge wire using Carry-Foster's bridge. - 4. Determination of absolute capacity of condenser using B.G. - 5. Full wave rectifier with \prod filter. - 6. Viscosity of liquid using Searle's viscometer. - 7. High resistance by leakage through condenser. - 8. **V**iscosity of liquid by oscillating disc method **Note:** At least six experiments should be performed. ## **B.Sc.** IInd year (Semester-IV) **Physics Practical Course code PHY-208** Paper-XIV Marks-50 - 1 Transistor characteristics in CE configuration. - 2. Transistor characteristics in CB configuration - 3. Study of CE amplifier - 4. Hartly Oscillator using transistor. - 5 Wien Bridge Oscillator using transistor/ Op-Amp - 6 Op-Amp as adder/substractor - 7 JFET characteristics. $(r_p, g_m \text{ and } \mu)$ - 8. Self-inductance by Owen's Bridge **Note:** At least six experiments should be performed. ## **Additional activity** - 1. Organize study tour industrial/research institute - 2. Conduct Seminars ## **QUESTION PAPER PATTERN** ## **B.Sc. S.Y. (III & IV Semester)** ## **PHYSICS** Time: 2.00 Hours [Max. Marks: 50] **NOTE 1**. All Questions carry equal marks 2. Use of logarithmic table and electronic pocket calculator is allowed. 10marks Q1 Chapt.I (Long question) ORChapt.II (Long question) O2Chapt.III (Long question) 10 marks ORChapt.IV (Long question) 10 marks Q3 Attempt following a) Chapt. I (short question) b) Chapt. II (short question) Ora) Chapt. III (short question) 10 marks b) Chapt. IV (short question) Q4 Attempt any two 10 marks a) Chapter I Problem b) Chapter II Problem c) Chapter III Problem d) Chapter IV Problem Q. 5 MCQ 10 marks Ten MCQ's having four alternatives based on theory and numerical. (Minimum two MCQ's from each chapter) *****